博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
E. Riding in a Lift(Codeforces Round #274)
阅读量:5936 次
发布时间:2019-06-19

本文共 3193 字,大约阅读时间需要 10 分钟。

E. Riding in a Lift
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 50001 ≤ k ≤ 50001 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2)(1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.

  1. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.
上次的cf今天才补题o(╯□╰)o,给n层楼。在a层開始,不能在b层停,且当在x层去y层时。|x - y| < |x - b|,求运行k
 
次的方案数。
有两种情况,dp[i][j],i为第i次,j为当前停的层数。

 当a<b时,此时全部的x不会超过b,当第i次停在j层。第i-1次肯定在[0,(b+j-1)/2],左端点不难想到,右端点推导过程:
设第i-1次停在x层。则第i层全部大于x小于b的点都能够取。我们仅仅考虑小于x的点。则x-j<=b-x-1,
整理得:   x<=(b+j-1)/2; 所以转移方程为:dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;
当a>b时,同理得
dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;
代码:
#include 
#include
#include
#include
using namespace std;const int maxn=5000+100;const int mod=1000000000+7;int dp[maxn][maxn];int sum[maxn][maxn];int n;void getsum(int x){ for(int i=1;i<=n;i++) { sum[x][i]=(sum[x][i-1]+dp[x][i])%mod; // printf("%I64d\n",sum[x][i]); }}int main(){ int a,b,k; scanf("%d%d%d%d",&n,&a,&b,&k); memset(dp,0,sizeof(dp)); memset(sum,0,sizeof(sum)); dp[0][a]=1; if(a

转载地址:http://invtx.baihongyu.com/

你可能感兴趣的文章
「docker实战篇」python的docker爬虫技术-导学(一)
查看>>
linux日志基础介绍
查看>>
如何关闭SElinux
查看>>
处理器之MMU(三)
查看>>
172.16.82.0/25的含义,IP段,掩码
查看>>
测试之路
查看>>
终于对了
查看>>
RabbitMQ集群
查看>>
Apache防盗链和隐藏版本信息
查看>>
ARP协议与路由
查看>>
SCI检索介绍
查看>>
Android开发之生成自己的签名文件及App签名打包
查看>>
如何提高阿里云上应用的可用性(二)
查看>>
云宏WinCloud前端工程师告诉你什么是UI扁平化
查看>>
如何压缩PDF文件,有什么简单的方法
查看>>
SpringMVC常用注解标签详解
查看>>
day18 Set集合
查看>>
Oracle event之db file read
查看>>
ORA 00600 [ktrexc_1]
查看>>
Docker 安装
查看>>